Nonlinear system identification with applications to selective catalytic reduction systems
نویسندگان
چکیده
The stringent regulations on the emissions levels of heavy duty vehicles create a demand for new methods of reducing harmful emissions from the engine. In order to be able to follow these increasingly stricter legislations, complex aftertreatment systems are used. Achievement of optimal performance of these systems requires accurate models that can be used for control design. As a result, the interest in modelling and control of aftertreatment systems has increased. This thesis deals with the modelling of the nitrogen oxide (NOx) emissions from heavy duty vehicles using the selective catalyst as an aftertreatment system for its reduction. The process of the selective catalytic reduction (SCR) is nonlinear since the chemical reactions involved are highly depending on the operating point. The momentary operating point is defined by the driving profile of the vehicle which, for example, includes cold and hot engine starts, highway and urban driving. The purpose of this thesis is to investigate different methods for nonlinear system identification of SCR systems with control in mind. The first two papers contain the theoretical work of this thesis. The first paper deals with improvement of an existing recursive prediction error method (RPEM) where a more accurate discretisation algorithm was used to improve the accuracy of the estimated nonlinear model. The second paper deals with analysis of the convergence properties of the algorithm. For this analysis several conditions were formulated that link the global and local convergence properties of the algorithm to stability properties of an associated differential equation. Global convergence to a stationary point was shown. In the third paper, the RPEM is used for identification of the SCR system and finally the fourth paper a Hammerstein-Wiener model for identification of the SCR system is applied. In both these cases the black-box models could predict the NOx behaviour of the SCR system quite well. The nonlinear models were shown to describe the SCR system more accurately than linear models.
منابع مشابه
Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملFault Detection Based on Type 2 Fuzzy system for Single-Rod Electrohydraulic Actuator
Electro-hydraulic systems with regards to the their specific features and applications among other industrial systems including mechanical, electrical and pneumatic systems, have been widely taken into consideration by the scientists and researchers. Due to the fact that the electro-hydraulic system is inherently a nonlinear system, has some problems such as signals saturation, nonlinear effici...
متن کاملSystem identification of a beam with frictional contact
The nonlinear system becomes an area with numerous investigations over the past decades. The conventional modal analysis could not be applied on nonlinear continuous system which makes it impossible to construct the reduced order models and obtain system response based on limited number of measurement points. Nonlinear normal modes provide a useful tool for extending modal analysis to nonlinea...
متن کاملIIR System Identification Using Improved Harmony Search Algorithm with Chaos
Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...
متن کاملDISTURBANCE REJECTION IN NONLINEAR SYSTEMS USING NEURO-FUZZY MODEL
The problem of disturbance rejection in the control of nonlinear systems with additive disturbance generated by some unforced nonlinear systems, was formulated and solved by {itshape Mukhopadhyay} and {itshape Narendra}, they applied the idea of increasing the order of the system, using neural networks the model of multilayer perceptron on several systems of varying complexity, so the objective...
متن کامل